Tiling a Rectangle with Polyominoes
نویسنده
چکیده
A polycube in dimension d is a finite union of unit d-cubes whose vertices are on knots of the lattice Zd . We show that, for each family of polycubes E, there exists a finite set F of bricks (parallelepiped rectangles) such that the bricks which can be tiled by E are exactly the bricks which can be tiled by F . Consequently, if we know the set F , then we have an algorithm to decide in polynomial time if a brick is tilable or not by the tiles of E.
منابع مشابه
On Tilings of Quadrants and Rectangles and Rectangular Pattern
The problem of tiling rectangles by polyominoes generated large interest. A related one is the problem of tiling parallelograms by twisted polyominoes. Both problems are related with tilings of (skewed) quadrants by polyominoes. Indeed, if all tilings of a (skewed) quadrant by a tile set can be reduced to a tiling by congruent rectangles (parallelograms), this provides information about tilings...
متن کاملRectangular tileability and complementary tileability are undecidable
Does a given a set of polyominoes tile some rectangle? We show that this problem is undecidable. In a different direction, we also consider tiling a cofinite subset of the plane. The tileability is undecidable for many variants of this problem. However, we present an algorithm for testing whether the complement of a finite region is tileable by a set of rectangles.
متن کاملRigid Tilings of Quadrants by L-Shaped n-ominoes and Notched Rectangles
In this paper, we examine rigid tilings of the four quadrants in a Cartesian coordinate system by tiling sets consisting of L-shaped polyominoes and notched rectangles. The first tiling sets we consider consist of an L-shaped polyomino and a notched rectangle, appearing from the dissection of an n×n square, and of their symmetries about the first diagonal. In this case, a tiling of a quadrant i...
متن کاملTiling rectangles with holey polyominoes
We present a new type of polyominoes that can have transparent squares (holes). We show how these polyominoes can tile rectangles and we categorise them according to their tiling ability. We were able to categorise all but 7 polyominoes with 5 or fewer visible squares.
متن کاملTiling the Plane with a Fixed Number of Polyominoes
Deciding whether a finite set of polyominoes tiles the plane is undecidable by reduction from the Domino problem. In this paper, we prove that the problem remains undecidable if the set of instances is restricted to sets of 5 polyominoes. In the case of tiling by translations only, we prove that the problem is undecidable for sets of 11 polyominoes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003